MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

5054 PHYSICS

5054/21
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2011	5054	21

Section A

1 (a) (i) $(V=) 64$ or 6.4×10^{-5} or 4^{3} or 0.04^{3}
C1
$(m=) \rho V$ or $920 \times 6.4 \times 10^{-5}$ or $920 \times 0.04^{3} \quad$ C1
0.059 kg or 59 g or $0.05888 \mathrm{~kg} \quad$ A1
(ii) 0.59 N or 0.5888 N
B1
$\begin{array}{ll}\text { (b) }(Q=) m l \text { or } 0.059 \times 3.4 \times 10^{5} & \mathrm{C} 1 \\ 2.0(0) \times 10^{4} / 2.0(1) \times 10^{4} / 2.006 \times 10^{4} \mathrm{~J} & \mathrm{~A} 1\end{array}$

2 (a) work is done by the (falling) block or block loses (G)PE or energy transferred from block to elevator or forces balance
(WD by falling block) raises the elevator or converted to GPE of elevator or (WD against) friction/air resistance or WD to accelerate elevator
$\begin{array}{ll}\text { (b) }(\mathrm{WD}=) F \times d \text { or } 4900 \times 24 \text { or } 117600 \text { or }(P=) E / t & \text { C1 } \\ 4900 \times 24 / 28 \text { or } 117600 / 28 & \text { C1 }\end{array}$
$4.2 \times 10^{3} \mathrm{~W}$ or 4.2 kW A1

3 (a) (i) one junction in flame and three wires and fixed point/ice bath or two wires two different metals and voltmeter connected

(b) any one of:
rapidly varying temperature
remote measurement
direct input to computer B1
small (heat capacity)
user not near thermometer
electrical output B1

B2

4 (a) one outer ray parallel to principal axis
C1
three rays parallel to the principal axis
A1
(b) (i) (speed) reduced or slows down B1
(ii) (speed) returns to original value $/ 3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \mathrm{B} 1$
(c) (i) $(f=) c / \lambda$ or $3.0 \times 10^{8} / 6.0 \times 10^{-7} \quad \mathrm{C} 1$
$5(.0) \times 10^{14} \mathrm{~Hz} \quad \mathrm{~A} 1$
(ii) no effect/unchanged/(f=)5(.0) $\times 10^{14} \mathrm{~Hz} \quad$ B1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2011	5054	21

5 (a) (i) electrons move to the rodB1
(ii) becomes positively-charged/loses electrons B1
(b) (i) positives on right and negatives on left M1
equal numbers(at least 2) and roughly symmetrical A1
(ii) positive charges attracted B1
attraction larger than repulsion or positives closer (than negatives to rod) B1
6 (a) (i) recognisable sine/cosine curve (≥ 2.0 cycles) B1
(ii) larger (peak)(voltage) B1
higher frequency/shorter period/described in words (allow shorter wavelength) B1
(b) $(R=) V / I$ or $12 / 0.50$ C1
24Ω A1
7 (a) volume decreases/quieter/less sound B1(in some way) resistance between S and C decreases or (in some way) voltage(to loudspeaker) reducedB1
(b) (the amplitude) increases B1
(the frequency) remains constant B1

8
(a) ${ }_{54}^{131} \mathrm{Xe}$
OR${ }^{131} \mathrm{Xe}$ and ${ }^{0} \beta$
${ }_{54} \mathrm{Xe}$ and ${ }_{-1} \beta$B1${ }_{-1}^{0} \beta$B1
(b) (i) downward curve B1
(ii) horizontal line B1
(c) any two of:
direction/space (of emission)time/frequency (of emission) or period/interval between emissions or differentcounts (in same time)nucleus that decays is unpredictableB2

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2011	5054	21

Section B

9 (a) at start: chemical (potential) energy
B1
at end: PE/GPE/gravitational energy B1
at end: heat/thermal/internal energy
B1
at end: KE or intermediate KE from chemical energy
B1
(b) (i) 0

B1
(ii) it increases B1
to constant value B1
(iii) gradient or $(v-u) / t$ or $(1400-600) / 40$ or other correct numbers

C1
$20 \mathrm{~m} / \mathrm{s}^{2}$
A1
(iv) $\left(F=\right.$) ma or $1.6 \times 10^{6} \times 20$

C1
$3.2 \times 10^{7} \mathrm{~N}$ A1
(v) $4.8 \times 10^{7} \mathrm{~N}$

B1
(c) (i) to every action there is an equal and opposite reaction or forces act in pairs of equal size and in opposite directions/on different bodies
$\begin{array}{ll}\text { (ii) downward force on gas } & \text { B1 } \\ \text { equal and opposite to upward/(b)(v) force (on rocket) } & \text { B1 }\end{array}$

10 (a) (i)

closed	open		
closed	closed		

(ii) S_{1} closed \rightarrow motor on
S_{1} open \rightarrow heater off
(iii) the heater would overheat/burn/melt or more efficient cooking/circulation described

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - October/November 2011	5054	21

(b) (i) $(I=) P / V$ or $3700 / 230$ or $3500 / 230$ or $200 / 230$ or $15(.217)$ C1
$16(.08695) \mathrm{A}$ or 16.1 A A1
(ii) integral value: $17 \rightarrow 40 \mathrm{~A}$ or up to candidate's (b)(i) +24 B1
live B1
(iii) if case becomes live or if live wire touches case B1
fuse blows B1
live/supply disconnected/case safe to touch/prevents shock/ prevented electrocution B1
(c) $0.20 / 3.5 / 3.7(\mathrm{~kW})$ or 200/3500/3700 $\times 12 \times 35$ C1
$0.20 / 3.5 / 3.7 \times 12 \times 35$ or 1470 c or 1554 c or 84000 c C1
84 c or $\$ 0.84$ (allow $€ /(/ \mathrm{Retc}$.) A1
11 (a) (i) force \times distance C1
force \times perpendicular distance (from the axis) A1
(ii) 8200×0.05 C1
410 Nm A1
(iii) (perpendicular) distance reduced/force not perpendicular/only a component of the force is perpendicular B1
(b) (i) $\quad(P=) F / A$ or $8200 / 0.0067$ C1
$1.2(23881) \times 10^{6}$ C1
$1.3(23881) \times 10^{6} \mathrm{~Pa}$ A1
(ii) friction M1
exerts opposing force or between piston and cylinder A1
(c) pressure decreases or F decreases (no contradiction) B1
(d) any four lines:
molecules collide with/hit walls
molecules move faster/kinetic energy increases molecules collide harder (with walls)
molecules collide more frequently (with walls) greater force/impulse/momentum change (on walls)B4

